
JB Enterprises Creating A Make Template 2008.07.26

Johan Bezem

CreatingAMakeTemplate.docx Page 1 of 19

Abstract
A drop-in MAKE structure for many similar and not so similar projects is described in this
document. Based on the excellent treatises on Paul Smith‟s website, I created a platform-
independent, multiple-environment MAKE structure based on GNU MAKE, automating most
elements of Makefile maintenance. This document not only explains how it works, but how it
has grown to be what it is today, so you may follow its path and insert deviations wherever
necessary.
I use C, C++ and assembler to illustrate the structures, since I know these languages well. If
you have another language that follows the same ways (compile multiple source files into as
many objects, linking the objects into one executable, possibly using libraries), you‟ll find it
easy to accommodate your additional requirements. Basic provisions for code-generators
(lex, yacc, IDL) have been made; other needs may prove more difficult to incorporate.

Introduction
In modern development environments provisions have been integrated to build the whole
project or parts of it. If and when you're developing for only one such environment, building
your project is not a big issue. However, as soon as cross-platform development is a
requirement, problems arise:

 There is not one development environment that covers all platforms;

 Various development environments are incompatible;

 In many cases you have to accommodate multiple compilers and linkers, all with their
own set of options.

And even when only one platform and one compiler/linker combination needs to be
supported, in many cases the configuration of one user cannot easily be transferred to other
users, if only because of the different installation paths or root directories for the sources.
In many such cases the use of a portable MAKE-utility, especially GNU MAKE, is suggested to
overcome these issues.
However, another issue arises especially with such a solution: Most developers would like to
have the ease of use of an integrated environment like Microsoft's Visual Studio, and have no
inclination to learn a whole new trade "setting up and maintaining the build environment".
Admittedly, using GNU MAKE isn't always trivial.
From personal experience I can fill volumes about unsuccessful deployment of some sort of
build system, often not really exceeding the level of a batch-file-based build system:

 The list of source files is only adapted whenever the linker complains about
unresolved symbols, resulting in a completely missing module when a developer had
forgotten to check in his locally developed sources for several weeks;

 The list of include directories contained so many unneeded and double entries that
the cleaning of that list resulted in a 20% decrease in build-time;

 The dependencies between sources and include files was so unreliable, that a whole
development team of more than 10 developers had to rebuild from scratch every time
they touched an include file.

[Remark: These three specific illustrations occurred in different teams, although combinations
have occurred in some other cases.]
For most of those who have some interest in build environments this will all be old news. So
what do I intend to do here?
My intention is to develop a complete build environment for C/C++ projects, illustrating every
step of the way using GNU MAKE, automating as much as possible, to obtain an environment
where one can concentrate on the projects at hand and minimizing the maintenance of the
environment itself. I will provide the reasoning for every step, implement the step, and provide
test suites. If you will, use the Makefiles as-is, or follow the single steps for your own
environment leaving out everything you don't need.

Recursive MAKE considered harmful?
Please note the question mark!

JB Enterprises Creating A Make Template 2008.07.26

Johan Bezem

CreatingAMakeTemplate.docx Page 2 of 19

My initial impetus to undertake this development effort was the paper by Peter Miller,
“Recursive MAKE considered harmful”

1
, as available on the Internet at

http://aegis.sourceforge.net/auug97.pdf. I can see his points, but I need not share his opinion
as to the solutions. I‟ve learned to look at recursion as a way to simplify solutions if applied to
suitable problems. And traversing a directory tree, doing the same job at every level, certainly
makes me look at a recursive approach.
The problems Mr. Miller lists in section 2 of his paper are not disputed. All these problems and
more do exist and they are real. Only his opinion, that the recursive use of MAKE is to blame,
is not mine.
This development effort goes to show that recursive use of (GNU) MAKE is feasible, and need
not suffer from the real drawbacks illustrated by Mr. Miller.
In the final chapter, after I‟ve presented my system, I will address all listed problems, and
discuss these in detail, including the solution for each I will present in these pages.

One Acknowledgement
This will not be a long section, but one acknowledgement is unavoidable. I learned much of
what I know about MAKE‟s possibilities from the articles Paul D. Smith, the current maintainer
of the GNU MAKE package, listed on his website, http://make.paulandlesley.org/. And several
if not most of his hints and tips have been incorporated in the structure presented here.
Thanks, Paul!

Prerequisites
Some basics have to be present before we start. So I'll list them here.
Since cross-platform development is to be achieved, the environment has to run on a variety
of host systems, most notably Windows, Linux and UNIX.
For that we'll need GNU MAKE. I will use version 3.81, the most recent version as of this
writing, but 3.79.1 should be sufficient for most needs. I will explicitly mention used features
exceeding 3.79.1, giving alternatives if possible.
In order to avoid the difficulties of differing command shells I have used bash throughout. The
version shouldn't be an issue, but for the record I have used 3.1. For Windows I used Cygwin
(http://www.cygwin.com). If you want to follow the examples step by step, be sure to install
the GNU C compiler gcc.
However, many embedded development efforts are hosted on Windows. So, seeing the need,
I have added support for Windows using CMD.EXE, using a version of GNU MAKE 3.81 targeted
at Windows without the Cygwin-DLL, using Visual Studio Express 2008 as an example
compiler.
I‟ll develop both versions in parallel.
For some specific features some utilities will be needed. These will be presented as needed,
and then listed here.
Let's start this project in the 'correct' way, let‟s create a list of requirements first.

Requirements
No development project should be undertaken without a decent set of requirements. So what
do we intend to achieve in the end? Don't worry, we'll tackle these requirements one-by-one,
but here's the complete list:

 Store the objects in a different place from the sources. Better yet, we want the system
to perform properly when presented with a read-only source tree (CD-ROM?).

 Store the objects in a structure reflecting the manner of building: For what processor
are we compiling? Which compiler/linker combination are we using? Etc.

 Accommodate an arbitrarily deep source directory structure automatically, no (or
hardly any) maintenance for the build system necessary when a directory or a
directory level is added.

 Find the source files to be processed automatically, unless a developer explicitly
wants otherwise.

 Find the necessary include directories automatically.

1
 Miller, P.A. (1998), Recursive Make Considered Harmful, AUUGN Journal of AUUG Inc.,

19(1), pp. 14-25.

http://aegis.sourceforge.net/auug97.pdf
http://make.paulandlesley.org/
http://www.cygwin.com/

JB Enterprises Creating A Make Template 2008.07.26

Johan Bezem

CreatingAMakeTemplate.docx Page 3 of 19

 Provide separate configuration files for all supported compiler/linker/toolset
combinations, reusable between projects.

 Centralize all non-trivial Makefiles. This means that all Makefiles in various project-
specific directories have to be trivial.

 Accommodate 3
rd

-party sources with their own Makefiles as sub trees within a
project.

 Provide for tools that generate source code, like lex, yacc or IDL.

Detailed Requirements

Store objects in a different place

For small projects, having the objects in the same directory as the sources is no real problem.
Maybe you can even live with 400 source files and their objects in one directory. But have you
ever used such a configuration over a slow network? Or, better, in a ClearCase dynamic
view? Things get really slow really fast. I have encountered a 400 file project where
separating-out the object files (and creating them on a local disk instead of a ClearCase
dynamic View) reduced the build time from 4 hours to 30 minutes maximum. So we will need
a way to tell the system to create intermediate files somewhere else.

Store the objects in a structure reflecting the manner of building
The simplest case: You have a debug version and a release version. If you change versions
from debug to release or vice versa, do you need to rebuild everything? I‟ve seen many
environments where this was absolutely necessary. Now add to that: A choice between
simulation target and real-world target, a choice between multiple deployment platforms
(Windows, AIX, Linux Debian/Redhat/SuSe, Solaris...), different compilers (native, cross-
compiler, GCC-variant), and soon you have more versions than you‟d have planned for.
Doing a cleanup before switching platforms/versions may be doable when compilation times
don‟t exceed a few minutes, but even half an hour is too much for such a concept, especially
when you switch over often.
So, keeping all temporary files, generated files, binaries, etc. in separate directories
differentiated by version would seem a valid requirement. If you touch one include file, all
versions are updated minimally: Just what is really necessary, nothing more.

Accommodate an arbitrarily deep source directory structure
automatically
Many, if not most build structures have been designed for a certain level of modularity: One
level for the target, one for the module, one for the sub-module, and finally the files. If you
would need an extra level (for instance, if you need a module at the sub-module level), many
build structures cannot accommodate the extra level, at least not without much work.
I would like an arbitrarily deep directory structure accommodated and minimal work to the
build structure whenever a directory is added.

Find the source files to be processed automatically

This may be a controversial topic, but I don‟t like changing Makefiles whenever I add a source
file or an include file. Every manual action may introduce errors that cause a delay at the
least, even if they are found immediately.
Some developers tend to keep temporary source files in their directories. Consider for
yourself if you want or need to allow that. I don‟t.
Of course a method shall be provided to explicitly exclude one or more source files, or even to
specify all source files „by hand‟.

Find the necessary include directories automatically
This is even more important than the previous requirement, especially when multiple files with
identical names might exist. Maintaining a list with include directories can be a real pain. So
as a rule I would like MAKE to find most include directories automatically. Of course some

JB Enterprises Creating A Make Template 2008.07.26

Johan Bezem

CreatingAMakeTemplate.docx Page 4 of 19

compiler include paths or library include paths need to be specified, but not for every include
file belonging to the project.

Provide separate configuration files
A build structure shall be universal – in an ideal world. Modularity shall help achieve at least
part of such universality. So we shall need configuration files for compilers, for linkers
(possibly combined with compilers), for target platforms, for source platforms, for third-party
libraries, etc. All these shall be reusable for new projects using the same resource.

Centralize all non-trivial Makefiles
The idea is to have trivial Makefiles in all/most of the directories relevant to the project, so that
it‟s easy for developers to create (or copy) a valid Makefile for new directories they create.
The complexity shall be encapsulated in centrally held MAKE-include files.
This is a non-omnipresent feature of GNU MAKE. If your MAKE cannot do that, you can get
GNU MAKE for your platform(s), or stop reading here (well, maybe not quite that drastic...).

Accommodate 3rd-party sources with their own Makefiles

One cannot accommodate every single type of 3
rd

 party software, without even knowing what
they‟d need. But if a subdirectory structure contains a Makefile with all necessary
configurations, it shall be possible to accommodate that at least. And since most 3

rd
 party

sources can be set up using a Makefile, such a provision would cover most necessary source
code distributions. Be aware that binary deliveries are another very common type, providing
just headers for interfacing and libraries in binary form. They need a passive form of interface
into the build structure only.

Provide for tools that generate source code
A tool that generates source code from some sort of configuration file is a challenge for most
building systems. The problem is that the files produced are source files, but with the status of
intermediate (object) files (they can be different for different platforms; they may need to be
rebuilt if the source changes...). But since lex, yacc, and IDL are a fact of development life,
we‟d better cater for them.

Physical Software Architecture
Often ignored, the physical architecture of a project is what MAKE gets as input. MAKE doesn‟t
care about interfaces, UML or singletons, it gets files and directories.
In order for MAKE to be able to automatically determine directory structure, files to be
compiled, and include files to be found, I will pose some requirements for the physical
architecture.
Please note: Most of these requirements (or restrictions, if you will) are not elementary to
using the MAKE structure, only for the ease of use and the level of automation I myself require.
Feel free to try variations, or respect the limitations of your specific environment.

About modules and sub-modules
One of the problems Peter Miller presented was to get the order of recursion into
subdirectories correct. I will describe a way to specify dependencies between subdirectories,
albeit on one directory level only. This is not only – in my eyes – an acceptable restriction, but
also sound architecture: If you need the directory /some/generator/directory to be built
before the directory /some/other/folder, the dependency is between other and generator
within the /source directory. And circular dependencies are to be avoided altogether, on that
level! If the directory /some/generator/user is again dependent on the directory
/some/other/folder, you will have to rethink your directory structure, and I would advise
you to review your physical software architecture.

JB Enterprises Creating A Make Template 2008.07.26

Johan Bezem

CreatingAMakeTemplate.docx Page 5 of 19

Placement of include files
This issue seems to be an area of dispute, at least in my personal experience. I will describe
my reasoning for the path taken. If you have other ideas, feel free to provide variations.
I consider a module to possibly consist of multiple source files with their corresponding
header files, all in the module‟s directory (one directory per module), and at least one
interface header. These interface headers are to be considered somewhat separately from
their originating module, since they offer the module‟s interface to the outside world.
Therefore, in my projects I create a directory in parallel to such a module‟s directory, called
include, containing the interface headers of all the sibling module directories. Following the
rules of encapsulation, the interface header of a module can be used by its siblings, but not
the module-internal header files (module-internal interfaces).
Such a structure enables an automatic harvesting of include paths: When traversing the
directory tree, on every level, if present, a directory called include is added to the include
path used for the directory itself and its children. In this way we have a maintenance-free
structure for providing include paths.
If a module‟s interface is needed somewhere else in the source tree, the interface header (not
necessarily the module itself!) may be moved one or more steps (include directories)
towards the file system root, thus getting a larger scope.
You may easily rename the directory for collecting interface headers, and if you do without
automation, you may of course maintain an include path by hand using any other or no
convention at all.
External libraries are different, and need a one-time setup only.

Test setup
For creating and testing the Makefile structure under development, I use the directory

structure as depicted in Figure 1: A directory called
make will contain all non-trivial Makefiles (*.mk, to be
included), the source directory as well as all (sub-)
module directories will contain a file called Makefile
(with purely trivial content), and the various include
directories will contain all interface headers.
The base directory (here Testdirectory) can be
anywhere in your directory tree. For now it has to
reside on a normal (writeable) hard disk, since we will
start working in this directory and we need write
permissions. The pathname up to Testdirectory
shall not contain any spaces (since spaces are
delimiters to GNU MAKE), other than that, no special
restrictions apply.
In order to create Makefiles which are independent
from their relative positions in the source tree, we
need to define an environment variable pointing to the
directory Testdirectory:

Set
YT_PBASE=/cygdrive/c/CSrc/makedev/Testdi
rectory

The construct using cygdrive is a Cygwin-specific
way to indicate DOS-paths using a Unix-style
pathname, indicating a DOS-pathname
C:\CSrc\makedev\Testdirectory.

If you‟re working under a Unix/Linux variant, use the
normal pathname.

When that is set, we create the trivial Makefile using just one line:

include $(YT_PBASE)/make/main.mk

and copy this Makefile into every (sub-) module‟s directory. That way, we create 14 files
called Makefile, all containing just the single line:

source/Makefile
source/module1/Makefile
source/module1/submodule11/Makefile

Figure 1 Directory Structure

JB Enterprises Creating A Make Template 2008.07.26

Johan Bezem

CreatingAMakeTemplate.docx Page 6 of 19

source/module1/submodule12/Makefile
source/module2/Makefile
source/module2/submodule21/Makefile
source/module2/submodule22/Makefile
source/module2/submodule22/submodule221/Makefile
source/module2/submodule22/submodule222/Makefile
source/module2/submodule23/Makefile
source/module2/submodule24/Makefile
source/module3/Makefile
source/module3/submodule31/Makefile
source/module3/submodule32/Makefile

If we now start GNU MAKE from the source directory, MAKE will report an error, since it cannot
find main.mk.
We‟ll start developing that file now.

Traversing the tree
For now we will leave the directories empty, and implement the recursive descent in main.mk.
The following Makefile will be sufficient at first:

 all: RECURSE

 list_dirs := $(dir $(wildcard ./*/Makefile))
 list_dirs := $(patsubst ./%,%,$(list_dirs))

 .PHONY: RECURSE $(list_dirs)

 ifneq ($(strip $(list_dirs)),)

 RECURSE: $(list_dirs)

 $(list_dirs):
<T> +@echo "Make[$(MAKELEVEL)]:$@"
<T> +@$(MAKE) --directory=$@ --no-print-directory
$(MAKECMDGOALS)

 endif

You can find a commented version of this main.mk in the file 001Traverse.zip. I‟ll dissect
the Makefile here, too.
We define a default target all, dependent on the phony target RECURSE. If such a phony
target is defined in the Makefile, the associated commands are unconditionally executed, but
MAKE will not complain if the target is not present.
Then, using the MAKE function wildcard, all subdirectories containing a file called Makefile
are concatenated into the variable list_dirs, retaining only the path component (with
terminating slash /). The pattern substitution patsubst removes the preceding pathname
components, keeping only the subdirectory‟s name with the slash appended.
In the leaf-directories the variable list_dirs will now be empty, so the rest of the Makefile
will remain empty, and MAKE will not need to do anything. In other cases, we have still found
subdirectories to traverse into, so we declare RECURSE to be dependent on the phony target(s)
in list_dirs, and all such targets are to have commands performing the actual recursive call
for MAKE, calling MAKE using the respective subdirectory as working directory (so the
contained Makefile will be used automatically). $(MAKECMDGOALS) will contain any goals we
indicated on the initial command line, like all, or (not supported yet) clean.
Two notes: The <T> indicates the use of a real TAB-character, necessary for MAKE to
differentiate between MAKE syntax and commands to be passed on to a shell.
The echo command is just to have MAKE bring at least some output as to where it is currently
executing, in a way more in line with my preferences. Leaving out the MAKE option
-no-print-directory would also produce this output on entering and leaving a directory,
but the different message layouts clutter the output window too much (in my opinion).
The + modifier will execute these commands even if MAKE is told not to execute any
commands, just to list them (option -n), and @ tells MAKE not to echo any command lines.
Experiment with this setup until you get a feel for what it does.
This small example will already recurse through any directory tree, of course without doing
anything inside these directories, but finding all relevant siblings and respawning itself there.

JB Enterprises Creating A Make Template 2008.07.26

Johan Bezem

CreatingAMakeTemplate.docx Page 7 of 19

Directory Dependencies
What even this simple structure already offers is the possibility to indicate dependencies
between modules or sub-modules, on any level. Refer to the file source/module2/Makefile
in the file 001Traverse.zip.
Since every subdirectory containing a Makefile is made into a phony target for MAKE,
indicating dependencies between directories is trivial:

submodule21/ : submodule23/

This indicates that the sub-tree starting at source/module2/submodule23 must be traversed
before starting in the sub-tree starting at source/module2/submodule21. If you now start
MAKE, you will see that submodule23 is processed before submodule21. That‟s all there is to
it. Please observe the terminating slashes; they are necessary, since the phony targets MAKE
creates in list_dirs also contain these terminating slashes.
Please make sure that such module dependencies are listed after the include directive, in
order not to influence the default target all. The default target is the first target encountered
in the Makefile, so listing the dependencies before the include directive influences the first
target MAKE „sees‟ in the respective Makefiles, which is not what we want.
Of course such dependencies cannot be automatically detected by MAKE, so you will have to
supply them yourself whenever necessary.

Using CMD.EXE
If you have a MAKE available for use in the command shell windows offers (CMD.EXE for
Windows XP), the structure we have defined can also be used for that command shell. We
only have one prerequisite incompatible with CMD.EXE, the definition of the environment
variable YT_PBASE for the root of the project.
If you set YT_PBASE to

Set YT_PBASE=c:/CSrc/makedev/Testdirectory

(Note the use of forward slashes, instead of backslashes), all works just like when using bash
from the Cygwin distribution. As we proceed through the development, this will not remain the
only issue. But I‟ll point out the issues as we encounter them, and offer solutions whenever
possible.
One restriction applies, as far as I can see: The CMD-version of GNU MAKE seems to be
unable to use multiple threads of execution, the -j option will be ignored. From what I read,
this may have been remedied in version 3.81 or one of the subsequent patches, but I'll have
to verify that.

Creating a mirror tree for intermediate files
Until now, the source tree is mostly empty, and we‟ve only traversed the source tree doing
nothing. What we really want is to compile some real source files.
Before we introduce some source files, however, we first need to think about where to store
the intermediate files (e.g. object files, but not just those).
According to an essay by Paul Smith, it is easier for MAKE to create „things‟ in the current
directory while searching for the sources than the other way around. Features like VPATH and
the extension-based variant vpath are especially intended for such use.
So the next step would be to create (if not already existing) such a directory, switch to it, and
run MAKE from there. But the recursion should still be driven by the source tree!
You may want to refer to the excellent essay by Paul D. Smith, since the techniques used
here will basically mimic his recommendations.

Choosing the name
We need to specify how the base of the intermediate‟s directory shall be called. This choice is
not arbitrary because of the way I‟ve chosen to differentiate the intermediate‟s directory from
the source directory. When MAKE is started in some directory of the source tree, I scan for the
name of the intermediate‟s directory in the current pathname. If it is not found, I assume to be
somewhere in the source tree, and change over into the objects‟ directory.
I chose the name objects.
Be sure to specify a meaningful name. Say you prefer obj as the name. If now you have a
module called globjob, you‟re potentially in trouble because of the embedded obj.

JB Enterprises Creating A Make Template 2008.07.26

Johan Bezem

CreatingAMakeTemplate.docx Page 8 of 19

You may, of course, choose a completely different strategy, for instance comparing with the
full path $(YT_PBASE)/objects, or testing for the presence of a special file or directory, that‟s
up to you.

Restarting MAKE in the intermediate’s directory
Using this name we shall create a subdirectory parallel to make and source (i.e.
$(YT_PBASE)/objects). For briefness and for now I will keep everything in one Makefile,
main.mk, in contrast to Paul Smith‟s solution with included Makefiles. We‟ll split this up later.
Since creating a new directory is done using different commands depending on the shell, we
start with defining a variable makedirectory containing the command to test for the existence
of a directory, and if it doesn‟t exist, to create it:

ifeq (1,$(YT_YN_USE_CMDEXE))
 makedirectory=if not exist $(1) md $(subst /,\\,$(1))
else
 makedirectory=if [! -d $(1)]; then mkdir $(1); fi
endif

Here we use an environment variable to indicate whether we are using the Windows‟ CMD.EXE
or not. For now, this differentiates between Cygwin bash and CMD.EXE; we‟ll expand on this
later. For this to work, you‟ll need to set the environment variable YT_YN_USE_CMDEXE to 1 in
CMD.EXE, and remove or clear the value for bash. It might be an idea to set this variable to 1
in the control panel, and then use your .bash_profile to set the value to 0, otherwise bash
will inherit the value set for CMD.EXE.
As you will recognize, makedirectory contains commands for the respective shell, using a
parameter indicated as $(1) for the directory to be created. This will be necessary to create
the intermediates‟ directory, as well as any subdirectories we‟ll want to create later.
Next we define a variable YT_OBJDIRNAME to contain the chosen name for the intermediates‟
directory:

export YT_OBJDIRNAME≔objects

We can check for the presence of this name in the full path of the current directory. If we don‟t
find it, we‟re in the source directory somewhere, and we need to change over to the
intermediates‟ directory, creating it in the process, if necessary. For that I more-or-less used
the file switch.mk from Paul Smith on his website:

ifeq (,$(findstring $(YT_OBJDIRNAME),$(CURDIR)))
 YT_OBJDIR := $(YT_PBASE)/$(YT_OBJDIRNAME)

 .SUFFIXES:

 .PHONY: $(YT_OBJDIR)
 $(YT_OBJDIR):
<T> +@$(call makedirectory,$@)
<T> +@echo "Make : $@"
<T> +@$(MAKE) -C $@ -f $(CURDIR)/Makefile \
YT_SRCVPATH=$(CURDIR) YT_OBJBASE=$(YT_OBJDIR) \
--no-print-directory $(MAKECMDGOALS)

 Makefile : ; @:
 %.mk :: ;

 % :: $(YT_OBJDIR) ; @:

else

Refer to Paul‟s website for a detailed description, but here‟s the gist of it:

 We disable most of the built-in rules using .SUFFIXES.

 We declare the intermediates‟ directory a phony target, and provide instructions to
create the directory if necessary, and then restart MAKE 1.) in that directory using -C,
2.) with the current Makefile using -f, 3.) with a reference to the relevant source
directory in YT_SRCVPATH, 4.) and a reference to the relevant intermediates‟ directory
using YT_OBJBASE.

 We provide empty rules for the Makefiles because of the fit-all rule below, to prevent
endless recursion.

JB Enterprises Creating A Make Template 2008.07.26

Johan Bezem

CreatingAMakeTemplate.docx Page 9 of 19

 And finally we provide a rule for whatever target is valid, dependent on the
intermediates‟ directory target, effectively restarting MAKE in that directory.

 The else listed is to encapsulate the rest of the Makefile, a corresponding endif can
be found as the final statement of the Makefile.

For layout reasons, the long line containing $(MAKE) is split into multiple lines, with
backslashes escaping the newline. Even if it might work, I do not recommend such a notation
in Makefiles, and urge you to keep it all in one line, even if this document has to accept the
layout restrictions. The samples provided will always keep everything necessary in one single
line.

Recursion through the source directory
In the remaining part of the Makefile you can see the contents from the previous instalment's
Makefile. However, a few changes are necessary, since we now want to execute MAKE from
the intermediates‟ directory, but the Makefiles still reside in the source tree, and we want to
traverse that tree recursively.
The first change is the way to populate the list_dirs variable: Since the Makefiles reside in
the source tree, we need to replace the './' (indicating the current directory) by the source
tree reference YT_SRCVPATH, both when scanning for Makefiles and when replacing the path
component to extract only the subdirectory‟s name.

list_dirs := $(dir $(wildcard $(YT_SRCVPATH)/*/Makefile))
list_dirs := $(patsubst $(YT_SRCVPATH)/%,%,$(list_dirs))

Finally, the only changes left are in the commands used to traverse the source tree.
I personally like it when my intermediate files are stored in a directory tree mimicking the
source tree, i.e. all directories in the source tree have an identically named representation in
the object tree. If you would like to have it all in one directory, you‟ll have to adapt.
My structure possibly requires the creation of a (sub-) directory before starting the next
recursion of MAKE. For that I reuse the makedirectory variable we already discussed, of
course with a different pathname, composed of the directory we are currently in (YT_OBJBASE)
and the next directory to be traversed, indicated by $@:

<T> +@$(call makedirectory,$(YT_OBJBASE)/$@)

The next statement is just information as to where we intend to go (I‟ll get back to the
patsubst in a second), and the final change is the recursive call to MAKE:

<T> +@$(MAKE) -C $(YT_OBJBASE)/$(patsubst %/,%,$@) \
YT_SRCVPATH=$(YT_SRCVPATH)/$(patsubst %/,%,$@) \
YT_OBJBASE=$(YT_OBJBASE)/$(patsubst %/,%,$@) -f \
$(YT_SRCVPATH)/$(patsubst %/,%,$@)/Makefile -no-print-directory \
$(MAKECMDGOALS)

Again be aware that all is on one line!

 We start the new MAKE in the subdirectory we just created (in the intermediates„ tree)

 using the source tree reference augmented with the new directory component in
YT_SRCVPATH

 using the intermediates„ tree reference augmented with the new directory component
in YT_OBJBASE

 using the Makefile in the source directory
A final remark on the use of patsubst here: There seems to be a difference in the
representation of $@ depending on whether the directory already exists or not. If the directory
does not exist, $@ expands to the directory‟s name without a trailing slash, like module12, if
that subdirectory (in the intermediates' tree) already exists, MAKE appends a slash like in
module12/. In most cases, this is no problem, however, when composing directories using $@
this may result in double slashes being used. To avoid all such problems, the trailing slash is
first removed, and appended only where necessary.
It‟s time for the second instalment, the files can be found in 002Objects.zip.

Providing sources
The next step is a very small one: I‟ve created sources in the directory structure. If you look at
those, you can see some of the conventions I tend to use.

1. Use include guards with a consistent naming convention, enabling identification of
include guards using wildcards (__INCLUDED_*__).

JB Enterprises Creating A Make Template 2008.07.26

Johan Bezem

CreatingAMakeTemplate.docx Page 10 of 19

2. Use external include guards in C/C++ sources from the second include directive
onwards (the first wouldn‟t make sense).

3. Interface headers for a module belong in the include directory in parallel to the
module itself, or more towards the root (see the sub-modules for module 3).

A first try at compilation of sources
Now that we have populated the source tree with sources, we start thinking about compiling
source files. Since real compilers demand too attention to details, for now we pretend to have
a compiler imitated by the touch command.

Adding a pattern rule
We add the following lines towards the end of main.mk, but of course before the final endif.

.SUFFIXES:

.SUFFIXES: .c

%.obj: %.c
<T> @echo .c to $(YT_OBJEXT): $(notdir $<)
<T> touch $@

The first .SUFFIXES: rule deletes all 'known suffixes' and their associated 'suffix rules'. This
isn‟t strictly necessary, since we will be defining all needed rules as pattern rules, overriding
the ‚suffix rules„, but it is good documentation anyway.
If you use an extra script for calling MAKE, consider using the option -r as a standard option in
your script, as it disables all built-in rules from the start.
What this pattern rule is missing is the location of the files. For the object files this is no
problem, since they are intended to be created in the intermediates' directory, which happens
to be the current directory. But then, how is MAKE to find the corresponding source file(s)?
Here‟s where VPATH, or better, the more flexible vpath comes in. It lets you find your source
files, without indicating them in the rules.
I tend to keep the vpath instructions in the vicinity of the .SUFFIXES: rule, to easily make
sure I‟ve covered all extensions, but because of the two-pass structuring of MAKE, there is no
real need:

vpath %.c $(YT_SRCVPATH)

Listing the objects
The Makefile now knows how to build „objects“, but it doesn‟t yet know which objects to build.
For that, we‟ll first determine which sources are available:

YT_SOURCES:=$(notdir $(wildcard $(YT_SRCVPATH)/*.c))

We list all C files in the source directory, strip the pathname components and put the names
into the variable YT_SOURCES. And from that variable we create the list of objects to create:

YT_OBJECTS := $(patsubst %.c,%.obj,$(YT_SOURCES))

And finally, we have to indicate, when we call MAKE, that we want these objects to be created.
To do that, we indicate the objects as prerequisites of all:

all: RECURSE $(YT_OBJECTS)

Under bash, this will probably run immediately. Under CMD.EXE, a tool called touch.exe will
be missing. You may go a get a free version of this tool at
http://www.codeproject.com/KB/applications/touch_win.aspx (registration required), also
linked from my website. If you then store touch.exe where you stored your MAKE utility,
you‟re set.
And since they‟re both called 'touch', we need not differentiate in the Makefile.
It‟s time for the third instalment, the files can be found in 003Sources.zip.

Looking for includes
Our 'touch'-compiler is quite happy, but a real compiler will need something more; it will need
to find all the include files. We‟ll look for compiler- and library includes later. For now we just
want to find the project's own include files.
The starting point is easy: The directory where the primary source file (the one we are trying
to compile) resides is also the first candidate when we‟re looking for includes:

http://www.codeproject.com/KB/applications/touch_win.aspx

JB Enterprises Creating A Make Template 2008.07.26

Johan Bezem

CreatingAMakeTemplate.docx Page 11 of 19

$(YT_SRCVPATH). But then, the compiler will know that without help (unless you‟re using
options to make the compiler act differently), so we do not want the current directory specified
in the compiler‟s command line. We need to tell MAKE, however. So we start with a new vpath
directive:

vpath %.h $(YT_SRCVPATH)

This time for include files only.

Harvesting include directories
Of course, since we‟ll also need interfacing include files, not all include files will reside in the
C-file‟s directory. Refer to the section "Placement of include files" (page 5) for the rationale
and the structure.

export YT_INCLUDEPATH := $(strip $(wildcard
$(YT_SRCVPATH)/include) $(YT_INCLUDEPATH))

What this does is the following:

 At each level of the Makefile recursion (except the first one, when we switch from the
source tree to the object tree), MAKE looks for the existence of a directory called
include being a valid subdirectory of the current source directory.

 If yes, it is added to a string of such valid directories, the nearest one being the first.

 If not, it is forgotten.

 The string is exported for use in further recursive calls to MAKE.
Be aware that this string can vary over the various levels of MAKE recursion, but if your
partitioning is correct, the compiler will always find the necessary include files.
However, for more than just this reason, it is not recommended to have multiple files with
identical names in one source tree. If the wrong file is found by the compiler, this can be
serious and potentially hard to find. But also, dependency checking – introduced later – is
dependent on all files having different names.
One thing remains: We now have a variable indicating the directories where to look for
include files, but we still must inform MAKE by expanding our vpath directive:

vpath %.h $(YT_SRCVPATH) $(YT_INCLUDEPATH)

The vpath directive for include files is not co-located with the vpath directive for source files,
since those files are not directly relevant to the pattern rules, but directly relevant whenever
the way of finding include files is modified. They are not needed for any compiler calls, since
we can use the variable itself (in modified form) for that, but later on, the dependency
checking needs to find the source files, including the include files. We could have left it out
here, and then revisited the subject when dependency checking is discussed, but I decided to
put it in here. The rationale is more easily conveyed in this context.
If you want to confirm that this is working (before we start deploying a real compiler!), you can
add another echo statement to the pattern rule performing the touch command:

<T> echo Include path: $(YT_SRCVPATH) $(YT_INCLUDEPATH)

Everything will work for both bash and CMD.EXE, even though both will use different
pathnames. Cygwin will offer Unix-like pathnames augmented with /cygdrive/…, whereas
the Windows shell will offer drive letters and the like, using forward slashes as separators. We
will (need to) return to these differences several times.

Engaging a real compiler
Basically, we have all the information that a compiler needs, so let's start using a real
compiler. For simplicity reasons, I‟ll start with Cygwin and the GNU C compiler gcc. Don‟t
worry, we‟ll be using the Microsoft Visual Studio Express 2008 compiler a few sections later,
both with Cygwin bash and with the CMD.EXE Windows shell, but at the moment I do not want
to clutter the issue with the relatively complex pathname conversions necessary. And we‟ll
need to do some partitioning before VS 2008 can be easily accommodated.

Compiler command line
Using Cygwin, most standard utilities reside in the default path, so chances are good that gcc
is installed in /usr/bin and directly callable from the bash-prompt. If not, you‟ll have to
provide a full pathname to the executable. Other than that, the command line for invoking the
compiler is pretty straightforward:

JB Enterprises Creating A Make Template 2008.07.26

Johan Bezem

CreatingAMakeTemplate.docx Page 12 of 19

<T> gcc -c $< -o $@

 -c indicates that we do not want to link any objects (yet)

 $< represents the source file to be compiled

 -o introduces the output filename, represented by
 $@

Let's run the Makefile and see what happens. OK, MAKE will fail, since the compiler cannot
know anything yet about include files, so the compile will fail. But just for the fun of it, let‟s
have a look at the gcc command line as MAKE will produce it:

gcc -c
/cygdrive/c/CSrc/makedev/Testdirectory/source/module1/submodule11
/sm11.c -o sm11.obj

[All is output on one line]
Here you see the effect of the vpath directive for finding source files: The file name we‟re
looking for is sm11.c, but since we‟re executing from somewhere along the intermediate‟s
path, MAKE will need the vpath pointer to find the source file; and when it does, it will use the
full pathname for any such reference.

Include options
To let the compiler know where to look for include files, we‟ll have to provide the variable
YT_INCLUDEPATH on the command line (for now; we‟ll enhance that later). But the compiler
will want the option -I prepended to each single path, so we have to do some string handling:

<T> gcc -c $< $(patsubst %,-I%,$(YT_INCLUDEPATH)) -o $@

The patsubst function takes every space-delimited string, and puts a '-I' in front of it.
Simple, but that‟s it. Now it works, creating a real object file, instead of 'touching' a wannabe.

Some small enhancements

Selective silencing
It‟s time for cleaning up a bit, and I‟ll start with a little trick I‟ve found useful for almost 10
years: An environment variable, I‟ll use YT_S for that, set to equal @.
Remember that GNU MAKE echoes all commands it executes before execution, unless you
issue some option to silence MAKE, or use the @-sign in front of the command? Well, this
wasn‟t quite the granularity I normally need.
Especially when dealing with complex and long compiler/linker/locater command lines,
whenever they work, you don‟t want to see them. But as soon as they don‟t work, you‟ll need
them in all detail, on any workstation showing the problem, and if necessary also remote or on
the phone. And if you‟ve tried instructing an experienced developer to change a Makefile,
under guidance, only to find his editor settings clobbering the TABs…
So my Makefiles contain @-signs for most of the uninteresting commands like echo or mkdir,
and interesting and/or complex commands are preceded with $(YT_S) instead:

<T> $(YT_S)gcc -c $< $(patsubst %,-I%,$(YT_INCLUDEPATH)) -o $@

In my standard environment, YT_S is always set to @; but if necessary, I can clear the variable,
run MAKE, and analyze the output, if necessary also when remotely supporting a developer.

Recognizing CFLAGS
Another issue has to do with a common MAKE variable CFLAGS. This variable is customarily
used to communicate specific options to the C compiler. A user specifies it on MAKE‟s
command line to add to or override the defaults MAKE has built-in.
OK, I will not use MAKE‟s built-in rules, but I can still be a decent citizen in the developer world
and add CFLAGS to the options presented to the compiler.
But cleaning up, I‟ll lay the foundation for further enhancements later on, and define my own
compiler flags.

YT_CPPFLAGS := $(patsubst %,-I%,$(YT_INCLUDEPATH))
YT_CFLAGS := $(CFLAGS)

Other flags, for assembler, C++ and many more, can and will be defined later.
And now these options are used as parameters to the gcc command:

JB Enterprises Creating A Make Template 2008.07.26

Johan Bezem

CreatingAMakeTemplate.docx Page 13 of 19

<T> $(YT_S)gcc -c $(YT_CPPFLAGS) $(YT_CFLAGS) $< -o $@

This will make later enhancements localizable and clearer, without creating overlong
command lines (at least in source form; expanded in a real project is a different issue, but for
that we have YT_S!).

A 'clean' target
Well, this is a controversial topic. Considering the many opinions on this, I will have to
address it, though. For now, I offer the simplest solution for the Makefile, a recursive clean:

.PHONY: clean
clean: RECURSE
<T> @rm -f *.obj

It is certainly not the most efficient, for now it only works on Cygwin or Linux/Unix, it
potentially deletes more than MAKE can create, is maintenance intensive, well, you name it.
But it works!

Cleaning up
Before we implement the same functionality for Windows' CMD.EXE, it‟s time to clean up
somewhat. In the end, we will differentiate the operating system, the shell and the tool-chain,
all posing different requirements, so we‟d better define a consistent structure from the
beginning.
The first part of the Makefile to deserve its own file is the part to switch over into the
intermediates' directory. Just like Paul D Smith, from whom the details come anyway, we‟ll
call it switch.mk and put an include directive into main.mk:

ifeq (,$(findstring $(YT_OBJDIRNAME),$(CURDIR)))
 include $(YT_PBASE)/make/switch.mk
else
...

A second part, very small until now, also get‟s an own file: Everything that can be done once,
and exported for use in recursive calls to MAKE, bounded by the ifeq checking for the variable
MAKELEVEL being zero. Currently, we have only one assignment there, but we‟ll expand on
that shortly:

ifeq ($(MAKELEVEL),0)
 include $(YT_PBASE)/make/level0.mk
endif

One thing to do in this level0.mk is to determine where we are at the start: Operating
system, shell, etc. These things may require some elaborate methods, especially when, later,
versions may matter, so we'd better do them only once. Be aware that this file is only read
once, even before we restart in the intermediates' directory!
And when we know that, we can easily determine ourselves, which version of some
'subroutines' will be required. Therefore, for now the final 'cleaning' action is to move the
makedirectory definition to after level0.mk.

The difference between...

... operating systems and shells
We need to differentiate between the way CMD.EXE is working, and the way bash is working.
We're not using too many features of either, but we'll have to circumnavigate the
discrepancies. So we'll start with initialization of the MAKE variables we want to use:

YT_USE_WINDOWS:=0
YT_USE_LINUX :=0
YT_USE_CMDEXE :=0
YT_USE_BASH :=0

The first difference is easy, at least for now: If we're on Windows (from NT 4.00 onwards, for
all versions known to me, including Vista and 2008 Server), the environment variable OS is set
to Windows_NT, mind the underscore. And if not, we're on Linux using bash:

JB Enterprises Creating A Make Template 2008.07.26

Johan Bezem

CreatingAMakeTemplate.docx Page 14 of 19

ifneq (Windows_NT,$(OS))
 YT_USE_LINUX:=1
 YT_USE_BASH:=1

If it is, we're on Windows, but we don't yet know the shell we're using.
I chose to use the PATH environment variable: CMD.EXE uses semicolons as path separators,
and as far as I know, semicolons are not allowed as legitimate characters in pathnames,
neither on Unix/Linux, nor on Windows. So if we find at least one semicolon in the PATH
environment variable, we're using CMD.EXE. Otherwise we're using bash (Cygwin assumed):

else
 YT_USE_WINDOWS:=1
 ifeq (;,$(findstring ;,$(PATH)))
 YT_USE_CMDEXE:=1
 else
 YT_USE_BASH:=1
 endif
endif

If you're using different environments (a stand-alone bash-implementation, a completely
different environment, COMMAND.COM (?!), ...) you may very well need to differentiate-out some
more details, or even expand on the variations offered here.
And finally, we're in level0.mk, where nothing makes much sense unless exported:

export YT_USE_WINDOWS YT_USE_LINUX YT_USE_CMDEXE YT_USE_BASH

Note how we used a different value to indicate the use of CMD.EXE than before. The
YT_YN_USE_CMDEXE contained the YN (for 'yes/no'), indicating a user's choice. This choice has
never been a real choice, but now we can delete the variable from our start-up scripts; the
environment used is now determined automatically.

... compilers
One thing a Makefile cannot automatically deduce is the compiler to use. Many compilers can
be installed on one single development system, possibly even in different versions. I will show
here how you can select a compiler - even a default compiler if that suits your environment -
and the variables to be defined by such a choice of compilers.
For one, using Cygwin we have directly used the GNU C compiler gcc. This is not a good
practice, so we have to define variables for using the compiler.
The standard way for GNU MAKE is to use the MAKE variable CC for that. So, when CC is set (as
an environment variable), we'd use that definition for the compiler, no questions asked. If it is
not set, however, we need another definition.
I always define a so-called 'toolchain'. A compiler usually is not the only tool to be used; we
know pre-processors, assemblers, linkers, loaders, all belonging to only one tool-chain.
For the moment, I'll use defaults for the tool-chain:

 If CMD.EXE is to be the shell, I'll default to the Microsoft compiler CL.EXE, I've taken
Visual C++ 9.0 Express Edition;

 If bash is the shell of choice, the GNU compiler tool-chain shall be the default, my
current Cygwin gcc compiler is version 3.4.4.

But of course, such defaults shall be overridable. If the developer sets the environment or
MAKE variable YT_TC_SELECT, the selected tool-chain shall be taken. Allowed/recognized
values shall be GCC, GCC344, VC, and VC9, for now. The strings without version make sure that
the newest available version shall be used.
And now for the implementation of all this...

Implementation

First we start with creating two additional Makefiles, tc_GCC344.mk and tc_VS9.mk; tc
stands for 'toolchain'. Since at the moment we only need the C compiler proper, both files
check for the presence of the CC variable, using that if found defined, and using gcc resp.
cl.exe if undefined. Be aware that CC is a MAKE variable by default, so we need to check for
undefined or default, since unless MAKE is called with the -r option, CC is never undefined.
As an example, here's tc_VS9.mk:

JB Enterprises Creating A Make Template 2008.07.26

Johan Bezem

CreatingAMakeTemplate.docx Page 15 of 19

ifeq (,$(strip $(filter-out undefined default,$(origin CC))))
 export YT_CC := CL.EXE
else
 export YT_CC := $(CC)
endif

Now, in level0.mk, we check for a tool-chain selection by the user: If YT_TC_SELECT is
defined (see above for allowed values), that value is used. Otherwise, GCC is used for all
bash-shells, VS is used for CMD.EXE:

ifeq ($(origin YT_TC_SELECT),undefined)
 ifeq (1,$(YT_USE_CMDEXE))
 YT_TC_SELECT := VS
 endif
 ifeq (1,$(YT_USE_BASH))
 YT_TC_SELECT := GCC
 endif
 ifeq ($(origin YT_TC_SELECT),undefined)
 $(error No supported shell for default toolchain detection)
 endif
endif

Next, we define a variable YT_TC_MAKE_INCLUDE to contain the intended MAKE include, using
$(wildcard to select all relevant files (like tc_VS7.mk, tc_VS8.mk and tc_VS9.mk), $(sort
the list and use $(lastword

2
 to get the highest version number. Be aware, when defining new

support files, that the sorting is done alphabetically; MAKE doesn't know about (version)
numbers, so VS9 is 'newer' than VS12! Use VS09 or similar, if necessary.
Here's the code:

YT_TC_MAKE_INCLUDE := $(lastword $(sort $(wildcard
$(YT_PBASE)/make/tc_$(YT_TC_SELECT)*.mk)))
ifeq (,$(strip $(YT_TC_MAKE_INCLUDE)))
 $(error Toolchain make include not found.)
endif

include $(YT_TC_MAKE_INCLUDE)

(The first line is split across two lines for layout reasons only.)
If you define an environment variable YT_TC_SELECT equal to GCC344, MAKE might take a
GCC3447, but not a GCC295, and it will always select GCC, even if using CMD.EXE. Of course,
the selected compiler has to be available on your system, accessible through your path, but
that's your responsibility. If necessary, look for vcvars32.bat in your Microsoft Visual Studio
directory; gcc is usually installed in your path, if at all.
And if all is performed as described, we can now compile the whole tree also with the Visual
Studio compiler.

... platform-dependent tools
When you are testing this setup, you'll find one thing broken, at least using CMD.EXE: MAKE

clean reports errors. The reason is quite simple: CMD.EXE doesn't know the command rm,
until now, hard-coded in the Makefile.
To complete the differentiation for now, we create two kinds of MAKE includes, one for the host
platform we're working with (named WINDOWS and LINUX), and one for each of the different
shells we may be using (named CMDEXE and BASH). In level0.mk we define (and export) two
further variables, YT_NAME_PLATFORM and YT_NAME_SHELL, initialized appropriately.
From those definitions we can include two MAKE includes, one for the platform:

include $(YT_PBASE)/make/platform_$(YT_NAME_PLATFORM).mk

and one for the shell:

include $(YT_PBASE)/make/shell_$(YT_NAME_SHELL).mk

All four possible files are initially created empty.
Now back to the original problem, a command for deleting files. Since GNU MAKE defines the
MAKE variable RM by default, we again use our variant, but without the possibility for an
override (that seems overkill in this case). In shell_CMDEXE.mk we define:

2
 $(lastword is a new feature of GNU MAKE 3.81; in order to support also versions earlier

than that, the replacement $(word $(words text), text) is used, slower, but more
compatible.

JB Enterprises Creating A Make Template 2008.07.26

Johan Bezem

CreatingAMakeTemplate.docx Page 16 of 19

export YT_RM := del /q 2>NUL

The 2>NUL makes the command remain silent even if no files are found to be deleted, /q
skips asking for confirmation. And in the bash variant shell_BASH.mk we keep the command
as in the past:

export YT_RM := rm -f

So now we again have the same functionality as in the previous instalment, now for both
Cygwin/Linux bash using gcc, and CMD.EXE using CL.EXE. Quite an effort for such a small
improvement, but it'll get even better.

Mixing and mingling
Say, we like Cygwin as a shell, but are required to use VS9 for a tool-chain. Problems galore:

 Cygwin paths are unlike Windows paths

 Tools from the tool-chain will require drive letters when absolute pathnames are to be
used

 Certain tools will require backslashes for path separators, even when relative paths
are used

 All changes need to be "backward transparent": If we change something specific for
Cygwin using VS9, other combinations still need to work properly.

Let's go one at a time.
First we set YT_TC_SELECT to VS in the Cygwin environment (use .bash_profile if
necessary). From this moment on, using Cygwin will produce errors from the compiler. But as
long as MAKE can find CL.EXE, all is well in respect to your setup so far. If not, please find out
how to set the appropriate environment variables for Visual Studio, including the PATH.

Converting Cygwin pathnames
If you now start MAKE in a Cygwin bash, CL.EXE is found, but the command line looks curious
for a CMD-based tool:

CL.EXE -c
-I/cygdrive/c/CSrc/makedev/Testdirectory/source/module1/include
-I/cygdrive/c/CSrc/makedev/Testdirectory/source/include
/cygdrive/c/CSrc/makedev/Testdirectory/source/module1/submodule11
/sm11.c -o sm11.obj

As can be expected, the cygdrive-containing pathnames are not understandable by the
compiler; the compiler produces an error and exits.
The problem lies mainly in the directory paths MAKE will create for us traversing the source
tree or using vpath, and used in the pattern rules. But all of these paths derive and expand
from YT_PBASE, so if we replace all occurrences of $(YT_PBASE) with the corresponding
drive-letter-path combination, the command will work.
When would we need this? Well, when using a Windows/Cygwin combination using non-
Cygwin tools: Platform Windows, shell Bash. To make such conversion quick, we'll do the real
conversion only once, for YT_PBASE, and create an exported variable YT_PBASE_WDL
(meaning: with drive letter), and do a substitution wherever a tool needs a non-Cygwin
pathname. And to avoid problems when using other combinations of shell and platform, we'll
define the YT_PBASE_WDL variable also in those cases, but identical to YT_PBASE.
So in those cases, effectively no change is done.
Let's see how it works. First we define a helpful variable in level0.mk, representing a space:

null:=
space:=$(strip $(null)) $(strip $(null))

Then we go to shell_BASH.mk:

JB Enterprises Creating A Make Template 2008.07.26

Johan Bezem

CreatingAMakeTemplate.docx Page 17 of 19

ifeq (1,$(YT_USE_WINDOWS))
 export YT_PBASE_WDL := $(word 2,$(subst
/,$(space),$(YT_PBASE))):/$(subst $(space),/,$(wordlist
3,99,$(subst /,$(space),$(YT_PBASE))))
else
 # If using bash on Linux, we have no problem.
 export YT_PBASE_WDL := $(YT_PBASE)
endif

Here's where the work is done. Be aware that there's only one line between the ifeq and the
else, starting with export, and ending with a quadruple closing parenthesis. This is how it
works:

 We take $(YT_PBASE) and replace all slashes with spaces, creating a space-
delimited list of directory components, preceded with cygdrive and <driveletter>

 Of that we take the second word (the drive letter)

 We place a colon and a forward-slash

 And append the rest of the list starting at the third word, while replacing every space
with a forward-slash again

So now YT_PBASE_WDL contains a path with a drive letter. The else clause is for all people
without such problems, and it is repeated in shell_CMDEXE.mk.
What we need to replace are the pathnames for the source files and include directories. So
the command line becomes:

<T> (YT_S)(YT_CC) -c $(subst
$(YT_PBASE),$(YT_PBASE_WDL),$(YT_CPPFLAGS)) $(YT_CFLAGS) $(subst
$(YT_PBASE),$(YT_PBASE_WDL),$<) -o $@

All in one line, of course. And like this, it works
3
.

Just for good measure, take a look at Cygwin using GCC. This combination now also starts
using paths with drive letters, since we do not differentiate yet between native Cygwin tool-
chains, and external (DOS-) tool-chains. But Cygwin gcc will handle such pathnames very
gracefully, so need not take any action. If you want, you may override the definition of
YT_PBASE_WDL in tc_GCC344.mk and make it equal to YT_BASE again, independent from the
platform or shell.

Different intermediates
If you've been following this discourse, you may have noticed one problem: If you do a build
with CMD.EXE, and immediately afterwards with bash, MAKE will report everything being up-to-
date, even though the object files were produced by a completely different compiler. Before
actually trying to link a binary we have to solve this issue.
The idea is to have separate data areas for all intended configurations, using separate
directories for each one, for instance, a debug and a release version, different target
platforms like Windows, Linux or embedded hardware configurations, or versions using
different tool-chains.
In order to do that, we augment the intermediates' directory name with a separate
subdirectory, more or less named after the configuration we are currently using.
We introduce a MAKE variable YT_DIFFDIR initialized to Im, adding subsequent components
starting with a dash for each relevant configuration 'decision' made:

YT_DIFFDIR := Im

We already made two decisions: The platform (Windows or Linux), and the tool-chain (GCC
or VS). So in the corresponding MAKE includes, we augment the definition of YT_DIFFDIR. As
an example, look at tc_VS9.mk:

YT_DIFFDIR := $(YT_DIFFDIR)-tcVS

You may choose to add the version number, increasing the length of the directory name.
And at the end of level0.mk, we just need to make sure the correct value is exported.
To use this extra directory level, we need to augment YT_OBJDIR in switch.mk:

YT_OBJDIR := $(YT_PBASE)/$(YT_OBJDIRNAME)/$(YT_DIFFDIR)

Since all further subdirectories are derived from YT_OBJDIR, this is all. If you now build the
tree with CMD.EXE (using VS by default), you'll have a different intermediates' directory from

3
 It still produces a warning about the use of the '-o' option being deprecated. We'll handle that

later.

JB Enterprises Creating A Make Template 2008.07.26

Johan Bezem

CreatingAMakeTemplate.docx Page 18 of 19

building with Cygwin bash (using GCC by default): Im-pfWIN-tcVS vs. Im-pfWIN-tcGCC, so
both builds will keep out of each other's way. If you're using Linux to follow this discourse,
your path will be augmented with Im-pfLINUX-tcGCC.
This has been quite some addition, so it's time for the next instalment,
005Differentiate.zip.

JB Enterprises Creating A Make Template 2008.07.26

Johan Bezem

CreatingAMakeTemplate.docx Page 19 of 19

Summary
What do I need to do to make this setup work as described?

1. Unpack one of the provided archive files to a directory without spaces in the
pathname. The one with the highest number will have the most functionality; refer to
the text for details.

2. Define an environment variable YT_PBASE to point to the absolute path where you
copied the archive file (using forward slashes also when using CMD.EXE on
Windows!); in this directory will be a subdirectory called make, containing all
centralized *.mk Makefiles.

3. The environment variable YT_YN_USE_CMDEXE is no longer needed or relevant.

This will be enough for the fifth instalment. As before, I will expand on this documentation,
extend this document, offer zipped snapshots of the Testdirectory project at every step,
and announce each instalment through my blog.
Happy making!

Johan Bezem
http://www.bezem.de/
http://blog.bezem.de/

http://www.bezem.de/
http://blog.bezem.de/

