
JB Enterprises Physical Architecture 2009.01.29

Johan Bezem

pa.doc Seite 1 von 5

Physical Architecture

Introduction
Most projects will create documentation as to the logical architecture of the endeavour:

 which components compose the system

 how do they interrelate

 which interfaces exist between the components

 further decomposition, if applicable

 some form of interface specification
Such an architectural overview is independent of the implementation constraints of real-world
systems, and even partially independent from the implementation language environment.
What is often overlooked is what I call the "physical architecture" of a project:

 what does a component look like

 what mandatory elements must be made available for any component

 what optional elements can be made available for any component

 what hierarchy can or must exist between interrelated components

 how deep a hierarchy is allowed

 how does a component map to a directory structure

 how does a component hierarchy map to a directory structure
Of course, such questions can only be answered in the context of a concrete realisation, and
are therefore only of secondary importance when creating an overall architecture. However,
such questions had better be explicitly answered before undertaking the implementation of
such an abstract architecture.
What I will set out in this article is a set of guidelines as an example of such a physical
architecture. The development of an arbitrary logical architecture has created a hierarchy of
several components with their interfaces, and I will set out some guidelines for the
implementation in C (usable for C++ too), on a Windows- or Unix-based platform.

How to map a hierarchy onto a file system
If we assume a hierarchical file system (like Windows or Linux), the most natural mapping of a
hierarchical component structure onto such a file system is to use one directory per
component or sub-component. The hierarchy can theoretically be arbitrarily deep. However,
most file systems limit the possible length of pathnames, thereby placing an implicit limit on
the depth of the hierarchy. In practice it is useful to limit the hierarchy depth to three levels in
normal cases, to eight in exceptional cases. That way, having a project root directory path of
some 40 characters long is still not a problem.
The names of the components can be arbitrarily chosen. A useful name should not exceed 10
characters and shall not contain any spaces (!). Limiting component names to the old DOS
8.3 naming constraint is no longer state-of-the-art.

Component interfaces to the external world
As the logical architecture defines its components, each component shall advertise at least
one (possibly more!) interface to the external world, i.e. to components that are not sub-
components.
Interfaces shall be contained in include files (*.h).
The primary interface (for most components it will usually be the only one) shall be made
available in a file called <component_name>.h, and be located in the component's directory.
That way, the complete component shall be contained in its directory.
To whom should a component advertise its interface(s)? Normally, just to its siblings at the
same hierarchy level. And in order to simplify (and possibly automate) finding a component's
interface file, a second include file named <component_name>_i.h shall be created in a
directory called include parallel to the component's directory. In that directory all interfaces of
the sibling components shall be collected. The _i stands for 'interface'.

JB Enterprises Physical Architecture 2009.01.29

Johan Bezem

pa.doc Seite 2 von 5

The interface file shall be used by all sibling components needing the interface. But in order to
avoid maintaining every interface twice, the file <component_name>_i.h shall only contain a
relative reference

1
 to <component_name>.h like this:

#include "../<component_name>/<component_name>.h"

Some boilerplate logic like a file comment and proper include-guards shall then complete the
file. The full interface shall only be contained in the <component_name>.h.
If additional interfaces are defined for a component, those interfaces shall also have two
include files, <component_name>.<subintf>.h locally in the component's directory, and
<component_name>_i.<subintf>.h in the include directory, containing an include directive
for the interface proper. The filename part <subintf> indicates – abbreviated as appropriate –
the additional interface. For instance: output.diag.h.

Interface implementation
The interfaces as specified need to be instantiated and implemented within the component.
For that, each interface header <component_name>[.<subintf>].h is combined with a
corresponding C file <component_name>[.<subintf>].c. Aside from one project-wide general
include file, the first non-comment directive in these C files is to include their corresponding
header file. In that way, it can be assured that the interface specification is complete, i.e. not
depending on the inclusion of other foreign interface files.
This implies one important rule: All header files shall include all interfaces they use by
themselves. This makes it irrelevant in which order interface files are included in a source
file.
As a consequence, when someone includes a certain interface, he/she shall be able to use all
facilities offered by that interface without worrying about other interfaces or include files. One
pre-processor peculiarity is to be accommodated: Depending on the coding guidelines in use,
if any, an interface may publish one or more macro definitions. Technically, such a macro
definition is only expanded upon use. However, if in such a macro facilities from other
interfaces are indicated, this other interface must be included in each file using that facility. In
such a case, the component interface shall include the used interface's header file, even if it
itself doesn't really need or use the interface. Even the interface's implementation file may not
need to use the macros so offered. But in order for the user of the component to be able to
use all facilities offered, also the macros, the so 'used' interface must be included in the
component's interface header.

Internal component structure
A minimal component shall be composed of one header file (the interface) and of one C file
(the implementation). A component can be bigger, though.
If the functional decomposition of a component does not warrant creating subcomponents on
an architectural level, the component can be internally decomposed at a design level. But
also in this case we need interfaces, both declarations and their implementation. File naming
is not basically restricted, but in order to globally identify files, a 3 or 4 letter acronym shall be
defined for each (sub-) component, and all component-internal files shall start with this
acronym. Similar rules as for externally visible files shall apply for component-internal files:
Each interface shall be fully contained in a header file; each header file shall have a
corresponding C file containing the full implementation of the interface; each C file shall start
with including its own interface header (except for one global header file).

File naming
The names of source files can be chosen as deemed appropriate. All relevant operating
systems forbid identical names in the same directory, but identical names are allowed if the
containing directory differs. However, in order to avoid problems in identifying files throughout
a project, no two files in one project configuration shall be named identically.

1
 Please be aware that the compiler in use must be able to use the path of the including file as

a first base for searching include files, as most current compilers can. If not, it might be
possible to use the directory from where the compiler is called as a base; using absolute
pathnames is strictly forbidden.

JB Enterprises Physical Architecture 2009.01.29

Johan Bezem

pa.doc Seite 3 von 5

Component-spanning
According to the principle of encapsulation, in a component hierarchy not every component
shall be able to use the (interface of) every other component. I call this principle "component-
spanning", with reference to the "span of control" a manager has.
Component-spanning follows two easy rules:
1. Any component can use the interfaces of all its direct subcomponents;
2. All components inherit the component-span of their respective parent component
These two rules ensure that the constraints imposed by the (logical) architecture can be
enforced by the physical architecture: If a build process (be it automatic or manual) starts at
the root and moves toward the component under scrutiny, thereby collecting all subdirectories
called include along the way, the paths so collected build the search path for compiling the
respective component.
If a component needs access to another component's interface that is not in view, this is a
sign that the architecture needs to be reviewed: Maybe an interface is incomplete, or the
component hierarchy may be up for some rework.

Include-guards
Include-guards are necessary for all header files. #pragma once is a possibility, but not
supported by all compilers, so to be sure, include-guards shall be provided for all header files.
Include-guards shall be unique within the project; otherwise they make no real sense.
I'd suggest using the (unique) filename as a basis for generating include-guards. At least the
way to create include-guards shall be consistent within or even across projects.
As an example, for an include file named PumpControl.h:

#if !defined(_included_PumpControl_h_)
#define _included_PumpControl_h_ 1
...
#endif /* _included_PumpControl_h_ */

Be aware that macro names starting with two underscores or with one underscore and a
capital letter are reserved names.

External include-guards
This is a topic of some controversy. The idea is to improve the speed of compilation by
specifying the include-guards from within a header file also outside around the include-
directive. To expand on the sample above, suppose some component wants to use the
interface of the PumpControl component, and therefore wants to include the corresponding
header file:

if !defined(_included_PumpControl_h_)
#include "PumpControl.h"
endif /* _included_PumpControl_h_ */

This construct will include the intended header file, but only if it hasn't been included before.
This functionality we have already with the include-guards of the previous section. The
difference is the opening, reading and closing of an extra file. If the file has been included
before, the include-directive is ignored, and the file isn't touched at all.
Don't underestimate the effects of such a simple construct: it can easily bring up to 30%
improvement in compilation times, depending on other conventions and rules on placement of
certain pre-processor directives.
The extra indentation between '#' and the ifdef / endif -pair is to visually enhance the
include-directive proper. Without the indentation the effective filename of the header to be
included would be shrouded and hard to discern.

Extern declarations
Most compilers hardly differentiate between prototypes of functions and external declarations
of those functions. A small difference exists, however: An external declaration indicates that in
the current compilation unit no definition for this function will be given, whereas a prototype is
a form of forward declaration to enable the type-safe usage of a function before its definition
has been processed.

JB Enterprises Physical Architecture 2009.01.29

Johan Bezem

pa.doc Seite 4 von 5

Before using a function at least a prototype declaration shall have been processed, to avoid
type inconsistencies between formal parameters and actual parameters, or formal return type
and actual return type.
An example:

/* External declaration */
extern
tErrorCode PMP_StopPump(void);

/* Prototype declaration */
tErrorCode PMP_StopPump(void);

The interface header is intended for use by other components. This means that for all
functions belonging to the interface an external declaration shall be made available. But when
we compile the component itself, the same include file shall provide prototype declarations.
For this to work without having to maintain two almost identical declarations, we shall
introduce a macro called _local_export_. This macro can have one of two values: If we need
a prototype, the macro shall expand into an empty string (whitespace), if we need an external
declaration, the macro shall expand into the keyword extern.
We can achieve this in two ways:

 Either we define _local_export_ as extern in the interface header before including the
local, effective interface header from the component's directory, and we un-define it again
after the include-directive;

 Or we require that each C file identifies itself to all included header files by defining a
filename-based macro like _cfile_PumpControl_h_, which is then checked within the
header file, and _local_export_ is set accordingly.

The first solution works fine when the physical layout is consistently kept in sync with all
recommendations contained in this document. The second solution is more locally contained,
and not quite as dependent on the physical structure described in this document. Therefore
I'd suggest using the second solution. Refer to the final section in this document where I
provide a small set of sample files based on the partial samples presented in this document.

Samples
The indentations in the samples do not reflect the indentation I would suggest using, because
of the limited space available.

Implementation file
/**
 * C-file comment PumpControl.c
 */
#define _cfile_PumpControl_h_ 1
if !defined(_included_PumpControl_h_)
#include "PumpControl.h"
endif /* _included_PumpControl_h_ */

if !defined(_included_OtherComponent3_i_h_)
#include "OtherComponent3_i.h"
endif /* _included_OtherComponent3_i_h_ */
if !defined(_included_OtherComponent4_i_h_)
#include "OtherComponent4_i.h"
endif /* _included_OtherComponent4_i_h_ */

/**
 * Function comment PMP_StopPump
 */
tErrorCode PMP_StopPump(void)
{
 HW_Stop_Pump();
 return (E_OK);
}

JB Enterprises Physical Architecture 2009.01.29

Johan Bezem

pa.doc Seite 5 von 5

Interface file
/**
 * H-file comment PumpControl.h
 */
#if !defined(_included_PumpControl_h_)
#define _included_PumpControl_h_ 1

/* Put all include directives here */
ifndef _included_OtherComponent1_i_h_
#include "OtherComponent1_i.h"
endif /* _included_OtherComponent1_i_h_ */
ifndef _included_OtherComponent2_i_h_
#include "OtherComponent2_i.h"
endif /* _included_OtherComponent2_i_h_ */

/* From here onwards, no include directives shall be used! */
/* Differentiate extern declarations and prototypes */
#if defined(_cfile_PumpControl_h_)
define _local_export_
#else
define _local_export_ extern
#endif /* _cfile_PumpControl_h_ */

_local_export_
tErrorCode PMP_StopPump(void);

/* Make sure _local_export_ is not carried over
 * into the next include */
#undef _local_export_

#endif /* _included_PumpControl_h_ */

Interface stub
/**
 * H-file comment PumpControl_i.h
 */
#if !defined(_included_PumpControl_i_h_)
#define _included_PumpControl_i_h_ 1

if !defined(_included_PumpControl_h_)
#include "../PumpControl/PumpControl.h"
endif /* _included_PumpControl_h_ */

#endif /* _included_PumpControl_i_h_ */

